Carbon nanotubes: synthesis, properties and engineering applications

Carbon nanotubes (CNT) represent one of the most unique materials in the field of nanotechnology. CNT are the allotrope of carbon having sp 2 hybridization. CNT are considered to be rolled-up graphene with a nanostructure that can have a length to diameter ratio greater than 1,000,000. CNT can be single-, double-, and multi-walled. CNT have unique mechanical, electrical, and optical properties, all of which have been extensively studied. The novel properties of CNT are their light weight, small size with a high aspect ratio, good tensile strength, and good conducting characteristics, which make them useful for various applications. The present review is focused on the structure, properties, toxicity, synthesis methods, growth mechanism and their applications. Techniques that have been developed to synthesize CNT in sizeable quantities, including arc discharge, laser ablation, chemical vapor deposition, etc., have been explained. The toxic effect of CNT is also presented in a summarized form. Recent CNT applications showing a very promising glimpse into the future of CNT in nanotechnology such as optics, electronics, sensing, mechanical, electrical, storage, and other fields of materials science are presented in the review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Rent this article via DeepDyve

Similar content being viewed by others

History of Carbon Nanotubes

Chapter © 2022

History of Carbon Nanotubes

Chapter © 2022

Carbon Nanotubes: General Introduction

Chapter © 2022

References

  1. Dai H (2003) Carbon nanotubes: synthesis, integration and properties acc. Chem Res 35:1035–1044 Google Scholar
  2. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58 Google Scholar
  3. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605 Google Scholar
  4. Bethune DS et al (1993) Cobalt- catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607 Google Scholar
  5. Esumi K et al (1995) Chemical treatment of carbon nanotubes. Carbon 34(2):279–281 Google Scholar
  6. Ni W et al (2006) Fabrication and properties of carbon nanotubes and poly (vinyl alcohol) composites. J Macromol Sci B 45:659–664 Google Scholar
  7. Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10:3739–3758 Google Scholar
  8. Prasek J et al (2011) Methods for carbon nanotubes synthesis-review. J Mater Chem 21:15872–15884 Google Scholar
  9. Chavan R et al (2012) A review: carbon nanotubes. Int J Pharm Sci 13:125–134 Google Scholar
  10. Eatmadi A et al (2014) Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9:393 Google Scholar
  11. Sharma R et al (2015) Synthesis of carbon nanotubes by arc-discharge and chemical vapor deposition method with analysis of its morphology, dispersion and functionalization characteristics. Cogent Eng 2:1095017 Google Scholar
  12. Lan Y et al (2011) Physics and applications of aligned carbon nanotubes. Adv Phys. https://doi.org/10.1080/00018732.2011.599963Google Scholar
  13. Hone J et al (2002) Thermal properties of carbon nanotubes and nanotube-based materials. Appl Phys A. https://doi.org/10.1007/s003390201277Google Scholar
  14. Meyyappan M et al (2003) Carbon nanotube growth by PECVD: a review. Plasma Sources Sci Tech 12:205–216 Google Scholar
  15. Ibrahim SK (2013) Carbon nanotubes–properties and applications: a review. Carbon Lett. https://doi.org/10.5714/CL.2013.14.3.131
  16. Ajayan PM, Zhou Z (2001) Applications of Carbon nanotubes. Appl Phys 80:391–425 Google Scholar
  17. Robertson J (2004) Realistic applications of CNTs. Mater Today 7:46–52 Google Scholar
  18. Trojanowicz M (2006) Analytical applications of carbon nanotubes: a review. Trends Anal Chem 25(5):480–489 Google Scholar
  19. Hirlekar R et al (2009) Carbon nanotubes and its applications: a review. Asian J Pharm Clin Res 2(4):17–27 Google Scholar
  20. Schnorr JM, Swager TM (2010) Emerging applications of carbon nanotubes. Chem Mater. https://doi.org/10.1021/cm102406hGoogle Scholar
  21. Liu C, Cheng HM (2013) Carbon nanotubes: controlled growth and application. Mater Today 16:19–28 Google Scholar
  22. Nessim GD (2010) Properties, synthesis and growth mechanism of carbon nanotubes with special focus on thermal chemical vapor deposition. Nanoscale. https://doi.org/10.1039/b9nr00427kGoogle Scholar
  23. Jariwala D (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltics and sensing. Chem Soc Rev. https://doi.org/10.1039/c2cs35335kGoogle Scholar
  24. Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B. https://doi.org/10.1016/j.mseb.2005.02.046Google Scholar
  25. Aqel A et al (2012) A Carbon nanotubes, science and technology part (I) structure, synthesis and characterization. Arab J Chem. https://doi.org/10.1016/j.arabjc.2010.08.022Google Scholar
  26. Thostenson ET et al (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912 Google Scholar
  27. Kuzmany H et al (2004) Functionalization of carbon nanotubes. Synthetic Metals. https://doi.org/10.1016/j.synthmet.2003.08.018Google Scholar
  28. Shah KA, Tali BA (2016) Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Mater Sci Semicond Process. https://doi.org/10.1016/j.mssp.2015.08.013Google Scholar
  29. Fan Z, Advani SG (2007) Rheology of multiwall carbon nanotube suspensions. J Rheol. https://doi.org/10.1122/1.2736424Google Scholar
  30. Bhatt A et al (2016) Carbon nanotubes: a promising carrier for drug delivery and targeting. Nano Architecton Smart Deliv Drug Target. https://doi.org/10.1016/B978-0-323-47347-7.00017-3Google Scholar
  31. Dresselhaus MS et al (2005) Raman spectroscopy of carbon nanotubes. Phys Rep. https://doi.org/10.1016/j.physrep.2004.10.006Google Scholar
  32. Khare R, Bose S (2005) Carbon nanotube based composites—a review. J Miner Mater Charact Eng 4:31–46 Google Scholar
  33. Lekawa-Raus A et al (2014) Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv Funct Mater. https://doi.org/10.1002/adfm.201303716Google Scholar
  34. Bernholc J et al (2002) Mechanical and electrical properties of nanotubes. Annu Rev Mater Res 32:347–375. https://doi.org/10.1146/annurev.matsci.32.112601.134925Google Scholar
  35. Tang QY et al (2010) R Study of the dispersion and electrical properties of carbon nanotubes treated by surfactants in dimethyacetamide. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2010.2224Google Scholar
  36. Ibrahim SK (2013) Carbon nanotubes-properties and applications: a review. Carbon Lett. https://doi.org/10.5714/cl.2013.14.3.131Google Scholar
  37. Ruoff RS, Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. Carbon 33(7):925–930 Google Scholar
  38. Eastman JA et al (2004) Thermal transport in nanofluids. Annu Rev Mater Res 34:219–246 Google Scholar
  39. Yu MF et al (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84:552–555 Google Scholar
  40. Jishi RA et al (1993) Phonon modes in carbon nanotubes. Chem Phys Lett 209:77–82 Google Scholar
  41. Singh R, Gupta SM (2016) Introduction to nanotechnology. OXFORD University Press, India Google Scholar
  42. Hiura H et al (1993) Raman studies of carbon nanotubes. Chem Phys Lett 202:509–512 Google Scholar
  43. Ghasempour R, Narei H (2018) CNT basics and characteristics. In: Rafiee R (ed) Carbon nanotube-reinforced polymers. Elsevier, Amsterdam, pp 1–24 Google Scholar
  44. Maultzsch J (2004). Vibrational properties of carbon nanotubes and graphite. Doctoral thesis. https://doi.org/10.14279/depositonce-967
  45. Hur J, Stuart SJ (2017) Raman intensity and vibrational modes of armchair CNTs. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2017.04.078Google Scholar
  46. Hodkiewicz J (2010) Characterizing carbon materials with Raman spectroscopy. Thermo Fisher Scientific, Madison Google Scholar
  47. Costa S et al (2008) Characterization of carbon nanotubes by Raman spectroscopy. Mater Sci Pol 26(2):433–441 Google Scholar
  48. Lei XW et al (2011) Radial breathing mode of carbon nanotubes subjected to axial pressure. Nanoscale Res Lett. https://doi.org/10.1186/1556-276x-6-492Google Scholar
  49. Moura LG et al (2017) The double-resonance Raman spectra in single-chirality (n, m) carbon nanotubes. Carbon. https://doi.org/10.1016/j.carbon.2017.02.048Google Scholar
  50. Andersson CH (2011) Chemistry of carbon nanostructures. Uppsala University, Physical Organic Chemistry, Uppsala Google Scholar
  51. Tasis D et al (2006) Chemistry of carbon nanotubes. Chem Rev. https://doi.org/10.1021/cr050569oGoogle Scholar
  52. Adamska M, Narkiewicz U (2017) Fluorination of carbon nanotubes—a review. J Fluor. https://doi.org/10.1016/j.jfluchem.2017.06.018Google Scholar
  53. Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41(11):1853–1859 Google Scholar
  54. Melchionna M, Prato M (2013) Functionalizing Carbon Nanotubes: An Indispensable Step towards Applications. ECS J Solid State Sci Technol. https://doi.org/10.1149/2.0083jssGoogle Scholar
  55. Ewels CP, Glerup M (2005) Nitrogen doping in carbon nanotubes. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2005.304Google Scholar
  56. Terrones M et al (2008) Doped carbon nanotubes: synthesis, characterization and applications. Appl Phys 111:531–566 Google Scholar
  57. Souza Filho AG, Terrones M (2009) Properties and applications of doped carbon nanotubes. B-C-N nanotubes and related nanostructures. Springer, New York, pp 223–269 Google Scholar
  58. Paraknowitsch JP, Thomas A (2013) Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci. https://doi.org/10.1039/c3ee41444bGoogle Scholar
  59. Mittal V (2011) Surface modification of nanotube fillers. Carbon nanotubes surface modifications: an overview, 1st edn. Wiley, New York, pp 1–23 Google Scholar
  60. Jeon IY et al (2011) Carbon nanotubes-polymer nanocomposite. In: Yellampali (ed) Functionalization of carbon nanotubes, pp 91–110
  61. Wepasnick KA et al (2010) Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem 10:10. https://doi.org/10.1007/s00216-009-3332-5Google Scholar
  62. Khalid P et al (2016) Toxicology of carbon nanotubes—a review. Int J Appl Eng Res 11(1):148–157 Google Scholar
  63. Bellucci S (2009) Carbon nanotubes toxicity. In: Bellucci S (ed) Nanoparticles and nanodevices in biological applications. The INFN lectures - vol I, vol 4. Springer, Berlin, Heidelberg, pp 47–67 Google Scholar
  64. Kiang CH et al (1995) Carbon nanotubes with single layer walls. Carbon 33(7):903–914 Google Scholar
  65. Mintmire JW, White CT (1995) Electronic and structural properties of carbon nanotubes. Carbon 33(7):893–902 Google Scholar
  66. Kaushik BK, Majumder MK (2015) Carbon nanotube based VLSI interconnects analysis and design. Chapter-2 carbon nanotube: properties and applications. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2047-3_2Google Scholar
  67. Charlier JC et al (1996) Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes. Phys Rev B 53(16):108–113 Google Scholar
  68. He H, Pan B (2009) Studies on structural effects in carbon nanotubes. Front Phys China. https://doi.org/10.1007/s11467-009-0021-yGoogle Scholar
  69. Sharma K et al (2012) Effect of multiple stone-wales and vacancy defects on the mechanical behavior of carbon nanotubes using molecular dynamics. Proced Eng 38:3373–3380 Google Scholar
  70. Ebbesen TW, Takada T (1995) Topological and sp3 defect structures in nanotubes. Carbon 33(7):973–978 Google Scholar
  71. Kroto HW et al (1993) Buckminster fullerene. Nature 318:162–163 Google Scholar
  72. Arora N, Sharma NN (2014) Arc discharge synthesis of carbon nanotubes: comprehensive review. Diam Relat Mater 50:135–150 Google Scholar
  73. Purohit R et al (2014) Carbon nanotubes and their growth methods. Proced Mater Sci 6:716–728 Google Scholar
  74. Farhat S, Scott CD (2006) Review of the arc process modeling for fullerene and nanotube production. J Nanosci Nanotechnol 6:1189–1210 Google Scholar
  75. Ando Y (2010) Carbon nanotube: the inside story. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2010.2017Google Scholar
  76. Krzystof K et al (2010) Carbon and oxide nanostructures, advanced structured materials. In: Yahya N (ed) Synthesis of carbon nanostructures by CVD method. Springer, Berlin, pp 23–49. https://doi.org/10.1007/8611_2010_12Google Scholar
  77. Gang X et al (2007) Analysis of the carbon nano-structures formation in liquid arcing. Plasma Sci Technol 9(6):770–773 Google Scholar
  78. Varshney K (2014) Carbon nanotubes: a review on synthesis, properties and applications. Int J Eng Res General Sci 2(4):660–677 Google Scholar
  79. Arepalli S (2004) Laser Ablation process for single-walled carbon nanotube production. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2004.072Google Scholar
  80. Scott CD et al (2001) Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl Phys A. https://doi.org/10.1007/s003390100761Google Scholar
  81. Arepalli S et al (2001) Production and measurements of individual single-wall nanotubes and small ropes of carbon. Appl Phys Lett. https://doi.org/10.1063/1.1352659Google Scholar
  82. Sinnott SB, Andrews R (2001) Carbon nanotubes: synthesis, properties, and applications. Crit Rev Solid State Mater Sci 10:10. https://doi.org/10.1080/20014091104189Google Scholar
  83. Braidy N et al (2002) A Single-wall carbon nanotubes synthesis by means of UV laser vaporization. Chem Phys Lett 354:88–92 Google Scholar
  84. Ding RG et al (2001) A Recent advances in the preparation and utilization of carbon nanotubes for hydrogen storage. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2001.012Google Scholar
  85. Yudasaka M et al (1999) Formation of single-wall carbon nanotubes: comparison of CO2 laser ablation and Nd:YAG laser ablation. J Phys Chem B. https://doi.org/10.1021/jp990072gGoogle Scholar
  86. Walker PL et al (1959) Carbon formation from carbon monoxide-hydrogen mixtures over iron catalysis I. Properties of carbon formed. J Phys Chem 63:133–140 Google Scholar
  87. Jose Yacaman M et al (1993) Catalytic growth of carbon microtubules with fullerene structure. Appl Phys Lett. https://doi.org/10.1063/1.108857Google Scholar
  88. Tempel H et al (2010) Ink jet printing of ferritin as method for selective catalyst patterning and growth of multiwalled carbon nanotubes. Mater Chem Phys. https://doi.org/10.1016/j.matchemphyw01.-029Google Scholar
  89. Popov VN (2004) Carbon nanotubes: properties and applications. Mater Sci Eng. https://doi.org/10.1016/j.mser.3003.10.001Google Scholar
  90. Yang F et al (2017) Water-assisted preparation of high-purity semiconducting (14,4) carbon nanotubes. ACS Nano. https://doi.org/10.1021/1csnano.6b0689Google Scholar
  91. Ding EX et al (2017) Highly conductive and transparent single-walled carbon nanotube thin films from ethanol by floating catalyst chemical vapor deposition. Nanoscale. https://doi.org/10.1039/c7nr05554dGoogle Scholar
  92. Zhou W, Ding L, Liu J (2009) Role of catalysts in the surface synthesis of single-walled carbon nanotubes. Nano Res. https://doi.org/10.1007/s12274-009-9068-xGoogle Scholar
  93. Nasibulin AG et al (2005) A novel aerosol method for single walled carbon nanotube synthesis. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2004.12.040Google Scholar
  94. Ahmad S et al (2005) Systematic investigation of the catalyst composition effects on single-walled carbon nanotubes synthesis in floating-catalyst CVD. Carbon. https://doi.org/10.1016/j.carbon.2019.04.026Google Scholar
  95. Agrez A et al (2010) Catalytic CVD Synthesis of carbon nanotubes: towards high yield and low temperature growth. Materials. https://doi.org/10.3390/ma3114871Google Scholar
  96. Flahaut E et al (1999) Synthesis of single-walled carbon nanotubes using binary Fe Co, Ni/alloy nanoparticles prepared in situ by the reduction of oxide solid solutions. Chem Phys Lett 300:236–242 Google Scholar
  97. Li WZ et al (1996) Large-scale synthesis of aligned carbon nanotubes. Science 274:1701–1703 Google Scholar
  98. Terrones M et al (1997) Controlled production of aligned-nanotube bundles. Nature 388:52–55 Google Scholar
  99. Pan ZW et al (1998) Very long carbon nanotubes. Nature 394:631–632 Google Scholar
  100. Li J et al (1999) Highly ordered carbon nanotube arrays for electronics applications. Appl Phys Lett 75:367–369 Google Scholar
  101. Andrews R et al (1999) Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chem Phys Lett 303:467–474 Google Scholar
  102. Wei BQ et al (2002) Organized assembly of carbon nanotubes. Nature 416:495–496 Google Scholar
  103. Liao Y et al (2018) Tuning geometry of SWCNTs by CO2 in floating catalyst CVD for high-performance transparent conductive films. Adv Mater Interfaces. https://doi.org/10.1002/admi.201801209Google Scholar
  104. Hussain A et al (2018) Floating catalyst CVD synthesis of single walled carbon nanotubes from ethylene for high performance transparent electrodes. Nanoscale. https://doi.org/10.1039/c8nr00716kGoogle Scholar
  105. Okada T et al (2019) Low-temperature synthesis of single-walled carbon nanotubes with Co catalysts via alcohol catalytic chemical vapor deposition under high vacuum. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2018.12.018Google Scholar
  106. Eveleens CA, Stephan I, Page AJ (2019) How does acetonitrile modulate single-walled carbon nanotube diameter during CVD growth? Carbon. https://doi.org/10.1016/j.carbon.2019.02.027Google Scholar
  107. Eveleens CA, Page AJ (2019) Catalyst and etchant dependent mechanisms of single-walled carbon nanotube nucleation during chemical vapor deposition. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.8b12276Google Scholar
  108. Romanenko AI et al (2018) temperature dependence of electrical conductivity and thermoelectric power of transparent SWCNT films obtained by aerosol CVD synthesis. Phys Status Solidi B 10:10. https://doi.org/10.1002/pssb.201700642Google Scholar
  109. Chen M et al (2002) Preparation of high yield multi-walled carbon nanotubes by microwave plasma chemical vapor deposition at low temperature. J Mater Sci 37:3561–3567 Google Scholar
  110. Huang ZP, Wang DZ, Wen JG, Sennett M, Gibson H, Ren ZF (2002) Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes. Appl Phys A Mater Sci Process 74(3):387–391. https://doi.org/10.1007/s003390101186Google Scholar
  111. Ren ZF et al (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science. https://doi.org/10.1126/science.282.5391.1105Google Scholar
  112. Teo KBK et al (2003) Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres—how uniform do they grow? Nanotechnology 14:204–211 Google Scholar
  113. Boskovic BO et al (2002) Large-area synthesis of carbon nanofibers at room temperature. Nat Mater. https://doi.org/10.1038/nmat755Google Scholar
  114. Minea TM et al (2004) Room temperature synthesis of carbon nanofibers containing nitrogen by plasma-enhanced chemical vapor deposition. Appl Phys Lett. https://doi.org/10.1063/1.1781352Google Scholar
  115. Hofmann S et al (2003) Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl Phys Lett. https://doi.org/10.1063/1.1589187Google Scholar
  116. Hofmann S et al (2003) Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates. Appl Phys Lett. https://doi.org/10.1063/1.1630167Google Scholar
  117. Hussain S et al (2018) Plasma synthesis of polyaniline enrobed carbon nanotubes for electrochemical applications. Electrochim Acta. https://doi.org/10.1016/j.electacta.2018.02.112Google Scholar
  118. Journet C et al (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758 Google Scholar
  119. Yasuda A, Kawase N, Mizutani W (2002) Carbon nanotube formation mechanism based on in situ TEM observation. J Phys Chem B 106:13294–13298. https://doi.org/10.1021/jp020977lGoogle Scholar
  120. Saito Y et al (1995) Extrusion of single-wall carbon nanotubes via formation of small particles condensed near arc evaporation source. Chem Phys Lett 236:419–426 Google Scholar
  121. Kurt R, Bonard JM, Karimi A (2001) Structure and field emission properties of decorated CyN nanotubes tuned by diameter variations. Thin Solid Films 398–399:193–198 Google Scholar
  122. Wang X et al (2002) Controllable growth, structure, and low field emission of well-aligned CNx nanotubes. J Phys Chem B. https://doi.org/10.1021/jp013007rGoogle Scholar
  123. Saito Y, Uemura S, Hamaguchi K (1998) Cathode ray tube lighting elements with carbon nanotube field emitters. Jpn J Appl Phys 37:L346–L348 Google Scholar
  124. Zhu W et al (1999) Large current density from carbon nanotubes field emitters. Appl Phys Lett. https://doi.org/10.1063/1.124541Google Scholar
  125. Bonard JM, Stockli T, Noury O, Chatelain A (2001) Field emission from cylindrical carbon nanotube cathodes: possibilities for luminescent tubes. Appl Phys Lett. https://doi.org/10.1063/1.1367903Google Scholar
  126. Chung KJ et al (2008) Improvement of lighting uniformity and phosphor life in field emission lamps using carbon nanocoils. J Nanomater. https://doi.org/10.1155/2015/373549Google Scholar
  127. Murakami H, Hirakawa M, Tanaka C, Yamakawa H (2000) Field emission from well-aligned, patterned, carbon nanotube emitters. Appl Phys Lett. https://doi.org/10.1063/1.126164Google Scholar
  128. Saito Y, Uemura S (2000) Field emission from carbon nanotubes and its application to electron sources. Carbon 38:169–182 Google Scholar
  129. Ericson LM et al (2004) Macroscopic, neat, single-walled Carbon nanotube fibers. Science. https://doi.org/10.1126/science.1101398Google Scholar
  130. Surgie H et al (2001) Carbon nanotubes as electron source in an x-ray tube. Appl Phys Lett. https://doi.org/10.1063/1.1367278Google Scholar
  131. Hwang RJ et al (2012) Carbon nanotube electron emitter for X-ray imaging. Materials. https://doi.org/10.3390/ma5112353Google Scholar
  132. Teo KBK et al (2005) Carbon nanotubes as cold cathodes. Nature. https://doi.org/10.1038/437968aGoogle Scholar
  133. Hasobe T, Fukuzumi S, Kamat PV (2006) Stacked-cup carbon nanotubes for photoelectrochemical solar cells. Angew Chem Int Ed. https://doi.org/10.1002/anie.200502815Google Scholar
  134. Kempa K et al (2003) Photonics crystals based on periodic arrays of aligned carbon nanotubes. Nano Letters. https://doi.org/10.1021/n10258271Google Scholar
  135. Wang J et al (2004) Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc. https://doi.org/10.1021/ja031723wGoogle Scholar
  136. Wang X et al (2005) Improved super lensing in two-dimensional photonic crystals with a basis. Appl Phys Lett. https://doi.org/10.1063/1.1863413Google Scholar
  137. Kempa K et al (2007) Carbon nanotubes as optical antennae. Adv Mater. https://doi.org/10.1002/adma.200601187Google Scholar
  138. Cui K, Maruyama S (2016) Carbon nanotubes silicon solar cells. IEEE Nanotechnol Mag. https://doi.org/10.1109/mnano.2015.2506318Google Scholar
  139. Wang F et al (2014) Fabrication of single-walled carbon nanotube/Si heterojunction solar cells with high photovoltaic performance. ACS Photonics. https://doi.org/10.1021/ph400133kGoogle Scholar
  140. Li Z et al (2013) Solar cells with graphene and carbon nanotubes on silicon. J Exp Nanosci. https://doi.org/10.1080/17458080.2011.572191Google Scholar
  141. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes-the route towards applications. Science 10:10. https://doi.org/10.1126/science.1060928Google Scholar
  142. Gooding JJ et al (2003) Protien electrochemistry using aligned carbon nanotube arrays. J Am Chem Soc. https://doi.org/10.1021/ja035722fGoogle Scholar
  143. Nugent JM, Santhanam KSV, Rubio A, Ajayan PM (2001) Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano Lett. https://doi.org/10.1021/n1005521zGoogle Scholar
  144. Tu Y, Lin Y, Yantasee W, Ren Z (2005) Carbon nanaotubes based nanoelectrode arrays: Fabrication, evaluation and application in voltammetric analysis. Electroanalysis. https://doi.org/10.1002/elan.200403122Google Scholar
  145. Tans SJ, Verscheren ARM, Cees Dekker (1998) Room-temperature transistor based on a single carbon nanotube. Nature 383:49–52 Google Scholar
  146. Martel S et al (1998) Single- and multi-wall carbon nanotubes field-effect transistors. Appl Phys Lett 10(1063/1):122477 Google Scholar
  147. Kong J et al (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625 Google Scholar
  148. Douglas KR, Star A (2008) Carbon nanotube gas and vapor sensors. Angew Chem Int Ed. https://doi.org/10.1002/anie.200704488Google Scholar
  149. Katz HE (2004) Chemically sensitive field-effect transistors and chemiresistors: new materials and device structures. Electroanalysis. https://doi.org/10.1002/elan.200403071Google Scholar
  150. Snow ES, Perkins FK, Robinson JA (2006) Chemical vapor detection using single-walled carbon nanotubes. Chem Soc Rev. https://doi.org/10.1039/b515473cGoogle Scholar
  151. Zhang T, Mubeen S, Myung NV, Deshusses MA (2008) Recent progress in carbon nanotubes-based gas sensors. Nanotechnology. https://doi.org/10.1088/0957-4484/19/33/332001Google Scholar
  152. Wang Y, Yeow JTW (2009) A review of carbon nanotubes-based gas sensors. J Sens. https://doi.org/10.1155/2009/493904Google Scholar
  153. Cantalini C et al (2004) Carbon nanotubes as new materials for gas sensing applications. J Eur Ceram Soc. https://doi.org/10.1016/s0955-2219(03)00441-2Google Scholar
  154. Modi A, Koratkar N, Lass E, Wei B, Ajayan PM (2003) Miniaturized gas ionization sensors using carbon nanotubes. Nature 424:171–174 Google Scholar
  155. Peng S, Cho K (2003) Ab initio study of doped carbon nanotube sensors. Nano Lett. https://doi.org/10.1021/n1034064uGoogle Scholar
  156. Villalpando-P’aez F et al (2004) Fabrication of vapor and gas sensors using films of aligned CNx nanotubes. Chem Phys Lett 10:10. https://doi.org/10.1016/j.cplett.2004.01.052Google Scholar
  157. Dag S et al (2005) Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes. Phys Rev B. https://doi.org/10.1103/physrevb.72.155404Google Scholar
  158. Kong J et al (2001) Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater 13(18):1384–1386 Google Scholar
  159. Olsen RA et al (2004) Adosrption and diffusion on a stepped surface: atomic hydrogen on Pt (211). J Chem Phys. https://doi.org/10.1063/1.1755664Google Scholar
  160. Davis JJ et al (1997) Protein electrochemistry at carbon nanotube electrodes. J Electroanal Chem 440:279–282 Google Scholar
  161. Chen RJ et al (2001) Non-covalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc. https://doi.org/10.1021/ja010172bGoogle Scholar
  162. Thess A et al (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487 Google Scholar
  163. Wang J et al (2003) Solubilization of Carbon Nanotubes by Nafion toward the Preparation of Amperometric Biosensors. J Am Chem Soc. https://doi.org/10.1021/ja028951vGoogle Scholar
  164. Brinda GC et al (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346–349 Google Scholar
  165. Yu Y et al (2009) Assembly of multi-functional nanocomponents on periodic nanotube array for biosensors. Micro Nano Lett. https://doi.org/10.1049/mnl.20080054Google Scholar
  166. Musameh M, Wang J, Merkoci A, Lin Y (2002) Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem Commun. https://doi.org/10.1016/s1388-2481(03)00076-6Google Scholar
  167. Yu X et al (2003) Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochem Commun 5:408–411 Google Scholar
  168. Yanga N et al (2015) Carbon nanotube based biosensors. Sens Actuators B 207:690–715 Google Scholar
  169. Walters DA et al (1999) Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl Phys Lett. https://doi.org/10.1063/1.124185Google Scholar
  170. Krishnan A et al (1998) Young’s modulus of single-walled nanotubes. Phys Rev B 58(20):14013–14019 Google Scholar
  171. Wong EW et al (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975 Google Scholar
  172. Treacy JMM et al (1996) Exceptionally high young’s modulus observed for individual carbon nanotubes. Nature 381:678–680 Google Scholar
  173. Yu MF et al (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640 Google Scholar
  174. Bazbouz MB, Stylios GK (2008) Novel mechanism for spinning continuous twisted composite nanofiber yarns. Eur Polymer J. https://doi.org/10.1126/science.1104276Google Scholar
  175. Zhang M et al (2004) Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science. https://doi.org/10.1126/science.1104276Google Scholar
  176. Jiang K, Li Q, Fan S (2002) Spinning continuous carbon nanotube yarns. Nature 419:801 Google Scholar
  177. Wu Z (2004) Transparent, conductive carbon nanotube films. Science. https://doi.org/10.1126/science.1101243Google Scholar
  178. Liu K, Sun Y, Chen L, Feng C, Feng X, Jiang K, Zhao Y, Fan S (2008) Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. https://doi.org/10.1021/n10723073Google Scholar
  179. Postma HW, Teepen T, Yao Z, Grifoni M, Dekker C (2001) Carbon nanotube single-electron transistors at room temperature. Science. https://doi.org/10.1126/science.1061797Google Scholar
  180. Prakash P et al (2018) A review on carbon nanotube field effect transistors (CNTFETs) for ultra-low power applications. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2018.03.021Google Scholar
  181. Gruner G (2006) Carbon nanotube transistors for biosensing applications. Anal Bioanal Chem. https://doi.org/10.1007/s00216-005-3400-4Google Scholar
  182. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev. https://doi.org/10.1021/cr020730kGoogle Scholar
  183. Dai H, Wong EW, Liebert CM (1996) Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272:523–526 Google Scholar
  184. Tang H et al (2004) High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays. Carbon. https://doi.org/10.1016/j.carbon.2003.10.023Google Scholar
  185. Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220–222 Google Scholar
  186. Largeot C et al (2008) Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc. https://doi.org/10.1021/ja7106178Google Scholar
  187. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854 Google Scholar
  188. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev. https://doi.org/10.1039/b813846jGoogle Scholar
  189. Zhang H et al (2008) Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability. Electrochem Commun. https://doi.org/10.1016/j.elecom.2008.05.007Google Scholar
  190. Zhong DY et al (2001) Lithium storage in polymerized carbon nitride nanobells. Appl Phys Lett. https://doi.org/10.1063/1.1419034Google Scholar
  191. Baughman RH et al (1999) Carbon nanotube actuators. Science. https://doi.org/10.1126/science.284.5418.1340Google Scholar
  192. Urban J, Jandera P (2008) Polymethacrylate monolithic columns for capillary liquid chromatography. J Sep Sci 31(14):2521–2540. https://doi.org/10.1002/jssc.200800182Google Scholar
  193. Svec F (2010) Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J Chromatogr A 1217(6):902–924. https://doi.org/10.1016/j.chroma.2009.09.073Google Scholar
  194. Lu H, Chen G (2011) Recent advances of enantioseparations in capillary electrophoresis and capillary electrochromatography. Anal Methods 3(3):488. https://doi.org/10.1039/c0ay00489hGoogle Scholar
  195. Moliner-Martínez Y, Barrios M, Cárdenas S, Valcárcel M (2008) Comparative study of carbon nanotubes and C60 fullerenes as pseudostationary phases in electrokinetic chromatography. J Chromatogr A 1194(1):128–133. https://doi.org/10.1016/j.chroma.2008.04.034Google Scholar
  196. ALOthman ZA, Wabaidur SM (2018) Application of carbon nanotubes in extraction and chromatographic analysis: a review. Arab J Chem. https://doi.org/10.1016/j.arabjc.2018.05.012Google Scholar
  197. Fadhillahanafi NM, Leon KY, Risby MS (2013) Stability and thermal conductivity characteristics of carbon nanotube based nanofluids. Int J Automot Mech Eng (IJAME). https://doi.org/10.1016/j.arabjc.2018.05.012Google Scholar
  198. Kumaresan V, Velraj R (2012) Experimental investigation of the thermo-physical properties of water–ethylene glycol mixture based CNT nanofluids. Thermochim Acta 545:180–186. https://doi.org/10.1016/j.tca.2012.07.017Google Scholar
  199. Harish S, Ishikawa K, Einarsson E, Aikawa S, Chiashi S, Shiomi J, Maruyama S (2012) Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions. Int J Heat Mass Transf 55(13–14):3885–3890. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.001Google Scholar
  200. Ghozatloo A, Rashidi AM, Shariaty-Niasar M (2014) Effects of surface modification on the dispersion and thermal conductivity of CNT/water nanofluids. Int Commun Heat Mass Transf 54:1–7. https://doi.org/10.1016/j.icheatmasstransfer.2014.02.013Google Scholar
  201. Walvekar R, Siddiqui MK, Ong S, Ismail AF (2015) Application of CNT nanofluids in a turbulent flow heat exchanger. J Exp Nanosci 11(1):1–17. https://doi.org/10.1080/17458080.2015.1015461Google Scholar
  202. Venkatesan SP, Hemanandh J (2018) Experimental investigation on convective heat transfer coefficient of water/ethylene glycol-carbon nanotube nanofluids. Int J Ambient Energy. https://doi.org/10.1080/01430750.2018.1472649Google Scholar
  203. Sharma B, Sharma SK, Gupta SM, Kumar A (2018) Modified two-step method to prepare long-term stable CNT nanofluids for heat transfer applications. Arab J Sci Eng 10:10. https://doi.org/10.1007/s13369-018-3345-5Google Scholar
  204. Sharma SK, Gupta SM (2016) Preparation and evaluation of stable nanofluids for heat transfer application: a review. Exp Thermal Fluid Sci 79:202–212. https://doi.org/10.1016/j.expthermflusci.2016.06.029Google Scholar
  205. Sharma SK, Gupta SM (2018) Synergic effect of SDBS and GA to prepare stable dispersion of CNT in water for industrial heat transfer applications. Mater Res Express 5(5):055511. https://doi.org/10.1088/2053-1591/aac579Google Scholar
  206. Babita Sharma S K, Gupta SM, Kumar A (2018) A effect of surfactant on CNT dispersion in polar media and thermal conductivity of prepared CNT nanofluids. ARPN J Eng Appl Sci 13(4):1202–1211 Google Scholar

Acknowledgements

This study is financially supported by GGSIP University, Dwarka under FRGS Project.

Funding

The study was supported by FRGS grant from GGSIPU, Dwarka, New Delhi, India.

Author information

Authors and Affiliations

  1. USBAS, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, 110078, India Nikita Gupta & Shipra Mital Gupta
  2. USCT, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, 110078, India S. K. Sharma
  1. Nikita Gupta