Indirect plant defense against insect herbivores: a review

Plants respond to herbivore attack by launching 2 types of defenses: direct defense and indirect defense. Direct defense includes all plant traits that increase the resistance of host plants to insect herbivores by affecting the physiology and/or behavior of the attackers. Indirect defense includes all traits that by themselves do not have significant direct impact on the attacking herbivores, but can attract natural enemies of the herbivores and thus reduce plant loss. When plants recognize herbivore-associated elicitors, they produce and release a blend of volatiles that can attract predators, parasites, and other natural enemies. Known herbivore-associated elicitors include fatty acid-amino acid conjugates, sulfur-containing fatty acids, fragments of cell walls, peptides, esters, and enzymes. Identified plant volatiles include terpenes, nitrogenous compounds, and indoles. In addition, constitive traits including extrafloral nectars, food bodies, and domatia can be further induced to higher levels and attract natural enemies as well as provide food and shelter to carnivores. A better understanding of indirect plant defense at global and componential levels via advanced high throughput technologies may lead to utilization of indirect defense in suppression of herbivore damage to plants.

Keywords: elicitor; indirect plant defense; natural enemies; volatile.

© 2016 Institute of Zoology, Chinese Academy of Sciences.

Similar articles

War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC. War AR, et al. Plant Signal Behav. 2012 Oct 1;7(10):1306-20. doi: 10.4161/psb.21663. Epub 2012 Aug 20. Plant Signal Behav. 2012. PMID: 22895106 Free PMC article. Review.

Marmolejo LO, Thompson MN, Helms AM. Marmolejo LO, et al. J Chem Ecol. 2021 Dec;47(12):1049-1061. doi: 10.1007/s10886-021-01314-6. Epub 2021 Sep 20. J Chem Ecol. 2021. PMID: 34541611 Free PMC article.

Turlings TCJ, Erb M. Turlings TCJ, et al. Annu Rev Entomol. 2018 Jan 7;63:433-452. doi: 10.1146/annurev-ento-020117-043507. Annu Rev Entomol. 2018. PMID: 29324043 Review.

Gasmi L, Martínez-Solís M, Frattini A, Ye M, Collado MC, Turlings TCJ, Erb M, Herrero S. Gasmi L, et al. Appl Environ Microbiol. 2018 Dec 13;85(1):e01468-18. doi: 10.1128/AEM.01468-18. Print 2019 Jan 1. Appl Environ Microbiol. 2018. PMID: 30366995 Free PMC article.

Hu L, Zhang K, Wu Z, Xu J, Erb M. Hu L, et al. Curr Opin Insect Sci. 2021 Apr;44:82-88. doi: 10.1016/j.cois.2021.03.010. Epub 2021 Apr 22. Curr Opin Insect Sci. 2021. PMID: 33894408 Review.

Cited by

Guzmán LF, Tirado B, Cruz-Cárdenas CI, Rojas-Anaya E, Aragón-Magadán MA. Guzmán LF, et al. Curr Issues Mol Biol. 2024 Aug 14;46(8):8794-8806. doi: 10.3390/cimb46080520. Curr Issues Mol Biol. 2024. PMID: 39194737 Free PMC article.

Miller S, Wilner D, Boldbaatar J, Bonduriansky R. Miller S, et al. Ecol Evol. 2024 Aug 14;14(8):e70145. doi: 10.1002/ece3.70145. eCollection 2024 Aug. Ecol Evol. 2024. PMID: 39145042 Free PMC article.

Cárdenas RE, Rodríguez-Ortega C, Utreras D, Forrister DL, Endara MJ, Queenborough SA, Alvia P, Menéndez-Guerrero PA, Báez S, Donoso DA. Cárdenas RE, et al. Sci Rep. 2024 Aug 1;14(1):17813. doi: 10.1038/s41598-024-67140-4. Sci Rep. 2024. PMID: 39090121 Free PMC article.

Kessler A, Mueller MB. Kessler A, et al. Plant Signal Behav. 2024 Dec 31;19(1):2345985. doi: 10.1080/15592324.2024.2345985. Epub 2024 Apr 30. Plant Signal Behav. 2024. PMID: 38687704 Free PMC article. Review.

Russavage EM, Hewlett JA, Grunseich JM, Szczepaniec A, Rooney WL, Helms AM, Eubanks MD. Russavage EM, et al. J Chem Ecol. 2024 Jun;50(5-6):262-275. doi: 10.1007/s10886-024-01493-y. Epub 2024 Apr 22. J Chem Ecol. 2024. PMID: 38647585